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An impact resulting from the application of a one-sided constraint upon 
a system is considered from a general point of view in this paper. 

The analytical theory of the impact presented is based on the prin- 

ciple of D’ Alembert-Lagrange. It stems from the fact that the applied 

one-sided constraint generates auxiliary limitations on “admissible dis- 

placements” of a system, and is built on the assumption that the basic 

mechanics equation remains valid and that the applied constraint is per- 
manently attached to the system during impact. 

1. A material system of n points with masses mi and coordinates xi, 

Yi’ xi relative to some stationary Cartesian system of coordinates is 
given. ‘Ihe points are constrained by smooth holonomic time-independent 
constraints, the equations of which are 

far (% Yl, 21, * - * , %I, Yn, 4 = 0 w 

“Admissible displacementsa for the system are determined by the re- 
lationships 

A smooth time-independent one-sided constraint 

is imposed 

‘Ihen an 

cp @ll Yl, 219 * * - 9 Gzc,, Yn, &I) > 0 (1.3) 

upon the system at some instant during motion. 

impact occurs in the system along with certain narrowing in 
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the diversity of the “admissible displacements” by virtue of the auxil- 
iary limitation generated by the constraint (1.3): 

(1.4) 

Let us assume that for the duration of the impact the constraint (1.3) 
remains permanently attached to the system. ‘lhis means that during the 
impact condition (1.4) must be satisfied. Also assume that the basic 
mechanics equation is fully valid throughout the impact. 

We will consider the idealized scheme of the impact. In order to do 
this we will integrate the basic mechanics equation within the region of 
impact duration and let the duration tend to zero. During the impact 
there are considerable changes in system velocities for comparatively 
insignificant changes in position and, therefore, in its “admissible dis- 
placements”. Taking this into account we obtain in the limit 

xmi CAx(g~i + Ayi’6yi + Azi’ 6zi) > 0 (1.5) 

Note. Here and elsewhere primes denote differentiation with respect, 
to time and A denotes differences in value for the corresponding quanti- 
ties after and immediately before the impact. It is worth noting also 
that the constants and functions remaining unchanged during the impact 
are freely moved inside and outside A. This property of A is widely used 
below. 

It can easily be seen that the conditions (1.4) and (1.5), together 
with the equations for system constraints, are insufficient for finding 
the state of the system after an impact with its state prior to impact 
known. One condition is missing for a single-valued solution of the pro- 
posed problem. ‘Ihe equation for a one-sided constraint (1.3) is not use- 
ful for this purpose precisely in view of its one-sidedness. The missing 
condition must therefore be taken “from outsiden. 

Let us take as such a condition the conservation of kinetic energy in 

the system 

AT=0 (1.6) 

Conditions (1.4) and (1.51, together with (1.6), constitute a closed 
system of conditions for a purely elastic impact. 

2. Whatever the impact (elastic, inelastic, with friction or without) 

the state of the system must be kinematically admissible after impact. 
For this reason no system of impact conditions may be considered accept- 
able if the final state of the system defined by these conditions only 
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is incompatible with the constraints (including, of course, one-sided 

constraints). Let us verify this important condition in our case. How- 

ever, only the inequality (1.4) is to be investigated. 

Note. For convenience of presentation the continuous numbering of 

variables will be used in this section (x,, x2, x3, m1 = m2 = a3 are co- 
ordinates and the mass of the first point in system; x4, x5, x6, m4 = 

m5 = m6 are coordi nates and the mass of the second point, etc.). 

Let us start with the derivation of explicit expressions for the 

values of velocity variations in system points. To this end we take the 
equality sign in (1.4). Then it is easy to see that in (1.5) we should 
also take the equality sign (it will be shown below that if (1.4) is con- 
sidered an inequality then (1.5) becomes valid automatically). We obtain 

(2.1) 

Multiplying the second and the consecutive equalities by the indeter- 

mined multipliers ,u and h, , adding the first equality and using classical 
reasoning, we obtain 

(2.2) 

Using Equations (1.1) for bilateral constraints of the system, we ex- 
press the multipliers X, in terms of p. From (1.1) we find 

Axi’ = 0 

Substituting for Axi their expressions from (2.2) and 
notation 

we obtain 

Here A@ denotes tlm algebraic supplement to the element 
‘a/J 

in the 
determinant 1 asp ( = A. We will prove that the determinant is non-zero 
and that consequently the last transformation is permissible. 

applying the 

(2.3) 

Indeed, let 

2 a,p ca = 0 
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where not all cg are zero. ‘lhen 

lhese equalities can be expressed in the following form: 

Hence 

i.e. ui = 0. lhus 

where not all c, are zero. But this is impossible by virtue of the system 

constraint equations (1.1) which have been assumed independent. ‘lhis is 
as was required. 

‘Ihe multipliers X, can now be excluded from the equalities (2.2). 
Substituting the expressions from (2.3) for h, into (2.2) we obtain 

(2.4) 

ne equalities (2.4) provide the explicit expressions for ni ’ in terms 

of the indetermined multiplier IL. In order to find p we will use condi- 
tion (1.6) for the conservation of kinetic energy during impact. If we 
denote by xiO’ and xi’, respectively, the ith component of system velo- 
city imnediately before and after impact then condition (1.6) can be 
written as 

2 mi (x( + xii) AX~’ = 0 

Eliminating from this the quantities Ax( with the use of equalities 
(2.4) and noting that during impact p f 0 we obtain 

The last equality 

2 mi (xi’ + xi;) Ri = 0 

may in turn be written as 

2 mi (Axi’ -+ 2&) Ri = 0 

(2.5) 

Substituting here the expressions for Axi’ from (2.4) we obtain 
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And since 

we have 

pzmiRi2 +2 zmiRi~ii= 0 

(2.6) 

Now it is easy to establish that the state of the system after impact 

is kinematically admissible. 

Indeed, if in the equality (2.5) the expression for Ri is expanded 

and, using equalities (2.6) as well as the analogous equalities for the 

system velocities after impact, we obtain 

~.$ri'=--&& 
1 

Hence if it is taken into account that prior to impact 

(it is because of this circumstance that the impact occurs), it follows 

that 

zsZi'>O 
i 

which is as required. 

In conclusion we will show that if the condition (1.4) is taken as an 

inequality, then condition (1.5) becomes valid automatically. Indeed 

since the product in the numerator of the fraction is always negative. 

Thus the existence of inequalities in conditions (1.4) and (1.5) is not 
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of essential importance for the theory presented. 

3. Let us consider now certain general properties of the impact occur- 
ring during the application of a single constraint upon a system. 

It is possible that among the “admissible displacements” of the system 
at the moment of impact there is a two-sided translational displacement 
of the system as a rigid body along some direction h.. In such a case, 
substituting in condition (1.5) the values 

where a, ,B, y are the direction cosines of h. relative to a coordinate 
system, and 1 is an arbitrary positive or negative number, we will ob- 
tain (in view of the arbitrary sign of I) 

2 mi (uAx~’ + PAyi’ + ~Az() = 0 

From this we easily derive 

where II%, v 
Y’ 

vZ are the components of the system’s center-of-gravity 

velocities. 

Thus, if at the moment of impact the system constraints admit a two- 
sided translational motion of the system as a rigid body in any direction, 
then the impact of the system is not reflected on the velocity of its 
center of gravity in this direction. 

Let us assume now that at the instant of impact there is a two-sided 
rotation of the system as a rigid body about some axis among its 
“admissible displacementsn. 

For this case we can place in the conditions (1.5) 

where S$ is an elementary positive or negative rotation of the system 
about the axis X; a, p, y are the angular coefficients of this axis; ei, 
vi, 5i are the coordinates of the ith point of system in the system of 
coordinates with the origin at X and the axes parallel to the axes of 
the basic Cartesian system of coordinates. 

The equality derived from (1.5) 
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can be easily transformed into the form 

A (a& + PK, + YKC) = 0 (3-l) 

where Kf, KT, Kg are the system's moments of momenta about the axes 5, 

rl# 6. 

'She equality (3.1) means that the moment of momentum for the system 

relative to X is invariant. 

lhus, if at the instant of impact the system constraints permit an 

elementary two-sided rotation of the system as a rigid body about some 

axis, then the impact of the system is not reflected on the magnitude of 

the system's moment of momentum relative to this axis. 

'lbe above-established theorems are in reference to a complete system. 

However, they remain valid for any part of the system for which the re- 

quirements of these theorems are satisfied with the assumption that the 

components of "admissible displacements" in the remaining parts of the 

system are all set equal to zero. 

For example, let there be given two material points one of which 

strikes a fixed plane. 'Ibe striking point may be translated along the 

surface for zero "admissible displacement" of the other point. Therefore, 

the particular theorem on the center-of-gravity motion is applicable to 

it, from which it is inzaediately seen that the tangent comprising the 

velocity of the striking point is not changing during the impact. 

4. We shall write the conditions for purely elastic impact in the 

lagrangian coordinates. 

Let 91, *se, q, be Lagrangian coordinates of a system. Then 

% = xi ((rl, . * - 9 4m), yi = yi (CL * - * > Qm), zi = zi (ql, - - - 9 Qm) (4.1) 

With the aid of Expressions (4.2) we eliminate from the left part of 

condition (1.5) the quantities 6Xi, 8yi, ‘ti and rearrange it: 

~m~(Axi’S~i + A yt’ayi f Azi’dzi) = 2 mi (Axi’ 2 zqa t&y, + . ..I 
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'Ihus, in the Lagrangian coordinates condition (1.5) is 

?]A (+a>0 
a 

Gndition (1.4) yields evidently 

~;+6q,>,O 
c1 

where 

@k,, *. . , qm) = cp (%(41, . * . ? 94 9 . 

Condition (1.6) 

remains unchanged. 

AT=0 

(4.3) 

%I (Ql, * . . , Qm)) 

(4.4) 

(4.5) 

'lhe conditions (4.3), (4.4) and (4.5) for the absolutely elastic im- 

pact occurring during the application of a single constraint upon a system 

have been established with the assumption that the considered material 

system consists of a finite number of material points. These conditions, 

however, remain in force (axiomatic assumption) for an arbitrary material 

system with a finite number of degrees of freedom provided its constraints 

are smooth. 

lhis generalization will be applied below in a case when two solid 

bodies collide and it will be shown that it (the generalization) is in 

full agreement with the classical theory of this problem. 

5. Conditions (4.3), (4.4) and (4.5) possess an interesting geo- 

metrical interpretation. 

As is known [l 1, the motion of a holonomic system with constraints 

independent of time may be geometrically represented as the motion of a 

point in the m-dimensional Riemann configuration space (n is the number 

of degrees of freedom of the system) the metric of which is determined 

by the condition 

where T is the kinetic energy of the system. Let 
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T = i 2 aaPqa’qp’ 

‘lhen the metric for the configuration space 

d? = 2 aaadqadqp 

must be 

(5.1) 

If at some point in the configuration space, two contravariant vectors 
1 1’ ***, 1s and I,*, . . . . . l.* are considered, then their lengths 1 and l*, 

as is done in Riemannian geometry, are defined by the equalities 

1* = ~aapla*lp* (5.2) 

and the angle 8 between them by the equality 

Zl* cos 0 = 2 a,p&* (5.3) 

‘Ihe vectors are considered orthogonal if cos 8 = 0, i.e. 

(5.4) 

‘lhe velocity of the describing point and the “admissible displace- 
ments” of the system are contravariant vectors. 

From the definitions (5.2) and (5.3) it can be seen then that the con- 
dition (4.5) for the conservation of kinetic energy implies the conserv- 
ation of the describing point velocity, while the condition 

which can also be expressed in the form 

(5.5) 

along with the condition (4.5) imp1 ies the equality of angles formed by 

the direction of an arbitrary “admissible displacement@ tangent to the 
boundary of the region for possible displacement of the system and the 
velocity of the describing point before impact and innnediately after im- 
pact. 

bY 

Note. The region D for possible displacements of the system is given 
the equation for a single constraint 

@((Ql.. ‘P q,)>O 

Consider a unit contravariant vector I,, . . . . Zn, orthogonal to all 
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“admissible displacements” of the system which are tangent to the bound- 

ary of D at the point where the system is bounded by D. In accordance 

with the definition (5.4) its components must satisfy 

for possible 6q,, . . . , 8qA, satisfying 

~$%qa=O 
a 

(5.6j 

(5.7) 

The condition (5.6) yields ZP, but if it is assumed that 1 is known 

then this condition can fully replace condition (5.7). Taking this into 

account, as well as the fact that the determinant 1 a,/ ( is different from 

zero, we find from (5.5) and (5.6) 

Aqp’ - ?dp = 0 (5.8) 

where A is an indetermined multiplier. 

Thus, the vector for the increase in the describing-point velocity is 

colinear with the normal to the boundary of the region D at the point of 

impact. This implies, on the one hand, that the reflection of the de- 

scribing point from the boundary occurs in the plane passing through the 

normal and the describing-point velocity before impact. 

On the other hand, substituting Expression (5.8) into condition 

A 2 aaPqa’qP’ = 2 aam'Aqa' t- 2 aa&o’Aqp’ = 0 

for the conservation of kinetic energy and reducing the thus-obtained 

equality by a multiplier different from zero, we obtain 

implying the equality of angles for incidence and reflection of the de- 

scribing point in its reflection from the boundaries of the region D. 

Thus, if the motion of the material system carries it to the boundary 

of possible displacements then, as the result of the occurring impact, 

the system rebounds from the boundary in accordance with the law that 

“the angle of incidence equals the angle of reflectionn. 

This is especially descriptive in the case when the expression for 

the kinetic energy of the system is of the form 

(5.9) 
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SilW, in this case, the conf~~ration space is Euclidian and the angles 

assume the usual meaning. 

6. Let us apply the theory presented to the solution of some problems. 

a) Two material points on a straight line connected by an inextensible 

string. 

When the points, moving away from each other, are at the distance 
equal to the length of the string, an impact occurs. However, as follows 
from the theorems on the center of gravity and the moment of momentum, 
there occur no changes in the motion of the center of gravity or the 
angular velocity of the string. 

b) Two material points of equal mass are placed on a smooth fixed axis. 

Let us assume that one of these points is at rest. while the other one 
is striking it with a certain velocity. The question is, what will be the 
state of the system immediately after impact if the impact is purely 
elastic? 

The problem permits a purely geometric solution. Indeed, the kinetic 
energy of the system 

where XI and z2 are the coordinates of the points after the introduction 
of Lagrangian coordinates ~1 and q2 in accordance with 

q1= V/m% qa = J&x, 

assumes the form (5.9). This means that the space for variables q1 and q2 

is Euclidian. It is realized if q1 and q2 are measured along the axes of 
a Cartesian system of coordinates (say q1 is measured along the abscissa). 

As the location of the first point is given, the second point may 
assume any location on one side of the first point. Assume for definite- 
ness that XI G x2. In accordance with this, the boundary of the region 
for possible displacements is the straight line q1 = q2 in the space of 
the variables q2, q2. while the region itself is the half-plane located 
to the left and above this straight line. 

Let us assume that at the instant of impact the second point in the 
system is at rest. Then immediately before the impact the velocity of 
the describing point in the space ql, q2 is directed along the abscissa. 
The rebounding of the describing point from the boundary is governed by 
the law that ‘the angle of incidence equals the angle of reflection”. But 
since the space ql, q2 is Euclidian, the angles take on the usual meaning. 
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Therefore, immediately after impact the describing point will have the 

velocity directed along the ordinate. 

Thus, if the moving point collides with a stationary point of the same 

mass, the latter one obtains the velocity of the first one, while the 

first one stops. This result is well known from the theory of centrally 

impacting spheres. 

c) Consider further the collision of two rigid plane bodies, located 

and moving in the same plane. 

We will assume that the collision of bodies occurs at one point, and 

that in the neighborhood of the point of contact at least one of the 

bodies has a smooth contour. 

We will choose the system of coordinates such that the origin coin- 

cides with the contact point at the moment of impact and that the x-axis 

is directed along the mutual tangent to the contours of the colliding 

bodies if both contours are smooth, or along the tangent to the smooth 

contour if there is one such contour. Denote by x1, yl, ol and corre- 

spondingly by x2, y2, ct.+ the coordinates of the center of gravity and the 

angular velocities of the bodies. Let sI and a2 be the masses, and cl, o2 

the moments of inertia of the bodies about their centers of gravity. 

Among the n admissible displacements” of the system there are the ele- 

mentary two-sided translational displacements of each body separately 

along the x-axis and the joint translational displacement of both bodies 

along the axis. The theorems on the motion of the center of gravity (the 

particular one along the x-axis and the general one along the y-axis) 

give 

Aq = 0, Axz’ = 0, A (W/I’ + ~zYz.‘) = 0 (6.1) 

On the other hand, among the “admissible displacementsn of the system 

in these circumstances are the elementary two-sided rotations of each 

body separately about the points on the y-axis, sufficiently distant from 
the origin of the coordinates. Choose one such point for each body (de- 

noted by O1 and Ox). Then, by virtue of the particular theorem on the 

moment of momentum 

AK1 = 0, AK2=0 (6.2) 

where K1 and K, are the moment of momentum of the first body relative to 

O1 and the moment of momentum of the second body relative to 02, respect- 

ively. But 

Kr = CLUI + ml [q/l’ - 21’ (YI - ~)l, K2 = czoz + m2 [QYZ’ - ~2’ (~2 - az)l 
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where a1 and a2 are the ordinates of points O1 and 02, respectively 
(their abscissas are equal to zero). Substituting these expressions into 
the equalities (6.2) and taking into account the first two equalities 
(6. l), we obtain 

clAol + mlxlbyl’ = 0, czAoz+ mmALyz' = 0 (6.3) 

Equalities (6.3) along with (6.1) and the condition (4.51 give the 
complete set of equations describing the collision of rigid bodies in the 
given circumstances. 

The study of these equations is beyond the scope of this article. How- 

ever, we will derive the following proposition, basic to the classical 

theory of rigid body collisions [3 1: the normal component for the rela- 
tive velocity of the points of contact in impacting rigid bodies changes 
sign while the magnitude remains unaltered. 

We will use the index “zero” for kinematic characteristics of systems 
immediately before impact, retaining the usual designations for them 
after impact. Then the condition of conservation of kinetic energy in a 
system may be written as 

QAW (01-k ~10) + czA% (6-b + 02,3) + mlAyl’2 + m2Ay2'2 = 0 (6.4) 

Utilizing the equalities (6.31, we rewrite (6;41 as 

- mlqAyl (ml+ 01~) + mlAyl’2 - mzw3yz’ (aa + 020) -I- m2A~2'~ = 0 

whence 

miAyl’ [yl’ + yi,,’ - x1(01 + OIL)] + hz2Ay2’ IYZ’ $_ ~20' - X2 (02 + 02o)I = O 

From this and from the equalities (6.1) it follows 

Yl' + Y1o'- x1(01+ wo) - Yz'- YlO' + 22 (02 + ml) = 0 

or 

(Yl' - wh) - (Y2' - z2cao2) = - [(Yl,' - who) - (Yzo' - xzozo)l 

which is as required. 
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